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An efficient semi-implicit method for the solution of the nonlinear, three-dimensional, 
resistive MHD equations is presented. The method is unconditionally stable with respect to 
the compressional fast magnetoacoustic and shear Alfven waves, The time step is limited 
instead by the nonlinear physical plasma phenomena. Furthermore, the method allows a high 
spatial resolution. Physically relevant test cases are presented and the feasibility of longtime 
simulations is discussed. 0 1991 Academic Press, Inc. 

I. INTRODUCTION 

The equations of nonideal magnetohydrodynamics (MHD) are widely used to 
study the macroscopic behaviour of toroidal or linear plasma confinement devices. 
One area of application is the study of plasma evolution leading to major disrup- 
tions, another area is the sawtooth oscillations in the ohmic regime of tokamaks. 
As this is one of the types of behaviour we want to simulate with the method we 
have developed we shall give a brief description of this interesting plasma 
phenomena. 

The “ramp-up phase” of the sawtooth is a slow diffusion of the whole plasma 
configuration on the resistive time scale, its duration is about l&100 ms, until a 
threshold is reached, whose exact characterisation is yet unknown. After reaching 
the threshold there is a sudden crash on a time scale of about 100 ps, characterised 
by an expulsion of central thermal plasma energy toward the border of the 
discharge, a sudden fall of the central electron temperature, and magnetic 
reconnection around a specific surface. This whole process is repeated periodically. 

The whole sawtooth cycle is not only characterized by disparate time scales, 
where the slowest scale is long compared to those associated with the fastest normal 
modes of the system, but also by very narrow current spikes governing the 
dynamics of the magnetic reconnection. Therefore a numerical scheme should 
obviously be stable for large time steps, as these are necessary for the “ramp-up 
phase” and, on the other hand, guarantee a high spatial resolution for correctly 
describing the magnetic reconnection process without a prohibitive number of 
radial grid points. 

The first MHD simulations of tokamak discharges made use of the reduced 
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MHD equations [l]; early calculations have retained only the leading order terms 
in the aspect ratio expansion [2, 31, while later, higher order corrections have been 
included [4]. Another approach assumed the fluid flow to be incompressible [S]. 
In both models, the compressional fast magnetoacoustic waves with highest fre- 
quencies about Z,/E are removed from the system (r, being the Alfven time corres- 
ponding to the transit of an Alfven wave around the torus in the strong toroidal 
magnetic field, E being the grid spacing). It should be remarked that for the model 
with incompressible plasma Row one needs a self-consistent definition of pressure, 
which could lead to nonphysical behaviour during the crashes, and for resistive 
instabilities, it can change the stability threshold. The time advance is made by an 
explicit scheme, limiting the time step by a shear Alfven Courant-Friedrichs-Lewy 
(CFL) constraint: At < z,/A4, where M is the highest poloidal Fourier mode. This 
is quite an improvement over the time step restriction caused by the fast waves 
which exist in the complete system but this shear Alfven constraint is still 
prohibitive for long time ( 103-104r,) simulations in three dimensions. The solution 
to eliminate all CFL constraints by use of an implicit time advance, while in prin- 
ciple possible in three dimensions, would require the solution, every time step, of 
matrix systems to large to be feasible. 

In Ref. [6, FAR code], the full compressible toroidal equations are solved in the 
following way: linearly, the scheme is fully implicit; this requires an inversion of 2D 
matrices systems that is feasible in the MHD case by present computers. Non- 
linearly, an explicit diffusion term is added that damps the compressible part of the 
velocity. In this way, nonlinear computations with rather high time steps are 
possible (see part 1I.E for a comparison between this scheme and ours). 

Recently, different methods have been developed in order to solve the full com- 
pressible MHD equations in three dimensions without CFL time step restrictions 
[7-lo]. The most promising one seems to be the semi-implicit method, introduced 
and further refined by Harned and collaborators [S-lo]. The basic idea of these 
semi-implicit schemes is to add new terms to the MHD equations to slow down 
artificially only the highest compressional modes or both the compressional and 
shear Alfven modes. These additional terms vanish as At -+ 0, but they give a 
numerical algorithm which in the first case is unconditionally stable with respect to 
the fast modes, limited only by a shear Alfven CFL constraint and unconditionally 
stable in the second case. The slowing down of the modes is obtained by replacing 
the equation of motion u = F by a “semi-implicit” equation (1 - At’L)u = F, where 
L is an elliptic operator which dominates the explicit part. L can be taken to be the 
Laplacian, or another anisotropic elliptic operator. 

This method has proved its efficiency, but has an obvious limitation: as L must 
dominate the explicit normal modes in the whole magnetic field, accuracy is 
generally obtained with a time step At < ra. With time steps of the order At = ~~ or 
larger, current spikes as those arising around resonant surfaces are broadened 
unacceptably, and accuracy on linear modes is lost. 

The numerical scheme we have developed is based on the same idea, i.e., to slow 
down artificially the high frequency waves. This is obtained by using the fact that 
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the equilibrium magnetic fields dominate the magnetic perturbations; this also is the 
reason why longtime-simulations have to be run to study the macroscopic 
behaviour of tokamak plasmas. Therefore, we propose a semi-implicit method 
which is 

-linearly fully implicit, the implicit matrices being one-dimensional in 
cylindrical geometry and two-dimensional in toroidal geometry 

-in the nonlinear phases, the numerical system is stabilized by an elliptic 
operator, added to the fully implicit linear operator. This elliptic operator 
dominates only the nonlinear magnetic perturbations, and thus its size is much 
smaller (10-3P10-4) than that of the elliptic operator used in the above semi- 
implicit methods. In this way we have found that the time step can adjust itself to 
the actual nonlinear situation as the relevant physical time scale. 

As is evident this scheme is more difficult to implement than the currently 
proposed semi-implicit methods, especially in toroidal geometry. Furthermore, the 
computation time per time step is larger in toroidal geometry. However, the gain 
in spatial resolution is considerable, allowing simulations which would otherwise be 
impossible with the same spatial precision. 

We shall present the numerical scheme in Section II, together with a comparison 
with previous work; results of numerical tests in cylindrical geometry are presented 
and discussed in Section III. Conclusions are stated in Section IV, where pros and 
cons of the method are discussed. 

II. TKE NUMERICAL SCHEME 

1I.A. The MHD Equations 

The resistive, compressible MHD equations written in non-dimensional form are 

p(t+(v.V)v)=jxb-Vp+vdv (1) 

6=Vx (vxb)+Vx (qj) (2) 

,C= -(v.V)p-Tp(V.v)+H (3) 

P = -V(PV), (4) 

where u is the velocity, b the magnetic field, j the current density, r] the resistivity, 
v the viscosity, p the mass density, and p the pressure. H stands for a heat diffusion 
and an external heating term and is not further considered in this paper as it is not 
relevant for the numerical method. 

The numerical scheme we will present is the same for cylindrical and toroidal 
geometry; but as in Section III we shall give only results for cylindrical tests we 
shall only provide explicit notations for this geometry. If toroidal geometry is 
considered, it will be specified explicitly. 
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In cylindrical tokamak simulations, we normalize the small radius to 1, the 
length of the device is 2rcR,,, the toroidal magnetic field at the center is B;(O) = R,, 
and the initial density is assumed to be a constant, p = 1; then the normalized 
Alfven time is z, = 1. An equilibrium is defined by a pressure profile p(r) and a 
safety factor profile q(r), with q(r) = rB=/R,B; q is of the order of unity and p 
generally of the order Ro2. The ideal MHD spectrum, obtained by solving the 
linearized equations around a static equilibrium, is divided into three distinct parts: 
the fast magnetoacoustic modes which form a discrete spectrum from w - RO to 
w - R,/Ar, Ar being the small,length scale considered; the shear Alfven waves form 
the second physically relevant part. They extend roughly from 

Q$ = (mlq(r,) - n)*, (5) 

where m and n are the poloidal and toroidal mode numbers and form a continuous 
spectrum. The modes are peaked at r,, and the “resonant surfaces” of the 
configuration locate at q(r) = m/n. The third part is the slow sonic waves, whose 
velocities are along the field lines and w2 - rp (r being the ratio of the specific 
heats and p the pressure). 

The physical resonances are defined by q(r,) = m/n and dominate the evolution 
in the sense that linear and nonlinear perturbations are mainly built up by shear 
Alfven modes near these surfaces, with small wi. The time scale of the nonlinear 
evolution remains of the order l/w,. The amplitude of the nonlinear modes remains 
small, 10 -* is a typical value and lo- ’ can be taken as an upper bound for a non- 
linear kink or saturated tearing mode. As the dynamics is governed by resonances, 
these small perturbations have a tremendous influence on the magnetic configura- 
tion. Near the resonances, current sheets can appear, with typical width 1O-2 and 
a maximum value of eight, up to ten times the equilibrium current. 

We define S as l/q(O), ~(0) being the resistivity at the center. Physical values of 
S can be as high as lo9 (for some devices even higher), but 3D simulations with 
S- 10’ are still quite difficult. In this case, a diffusive phase with very small 
magnetic perturbations requires about 105r,; this indicates clearly that a linear 
unconditional stable scheme is required. On the other hand, the scheme has to 
permit a great spatial accuracy in the nonlinear phases (whose time scale is about 
103r,), conjugated with a time step not less than a fraction of ru, since the CPU 
time per time step is of the order of one second. We have tried to reconcile all these 
requirements in the semi-implicit method we shall now detail. 

1I.B. The Semi-Implicit Method 

Following Ref. [8], we define a semi-implicit method by replacing the equation 
of motion for the velocity field u = F by 

(1 -L)u=F, (6) 

where L is a numerically stabilizing operator. In Refs. [9, 101 successive 
improvements of L have been presented, the best choice being an anisotropic 



448 LERBINGER AND LUCIANI 

elliptic operator which dominates the explicit part (see Ref. [lo], where the 
operator L is given explicitly in the Appendix). 

We propose to use L = dt*L, + CA, where L, is the full linearized MHD force 
operator around the equilibrium, A the Laplacian operator, and c is chosen such 
as to dominate only the nonlinear magnetic perturbations. 

The exact definition of L, is the following: using the MHD equation and 
linearizing them around an equilibrium, we obtain, by eliminating the B field and 
the pressure, a second-order equation for the velocity: 

d2vJdt2 = L,v. 

L, contains all the equilibrium quantities, toroidal and poloidal B fields, and 
pressure. It results, in the cylindrical case, in 1D matrices (diagonal in m and n) 
and, in the toroidal case, in 2D matrices (diagonal in n only). 

This semi-implicit operator together with a second-order predictor corrector 
time-stepping to be discussed further in Section 1II.C ensures, in the linear phase, 
unconditional stability and, with finite but small c, good nonlinear stability proper- 
ties together with a high spatial accuracy. Apart from the exact numerical scheme 
this provides in fact a linearly fully implicit scheme. The magnitude of c is small 
(typically 10P4) and thus CA does not lower accuracy on linear modes, as c is inde- 
pendent on the time step, which can be very high in linear phases. We refer to 1II.C 
for a discussion of linear numerical stability and we will now discuss nonlinear 
stability (the time step is, in any case, limited by an CFL constraint on convection). 

We will base our discussion of the nonlinear stability of the method on Ref. [9], 
where calculations are done for a uniform magnetic equilibrium field. Harned and 
Schnack showed first that for a constant magnetic field B, a semi-implicit operator 

K,=dt2[VxVx(vxC0)]xC0 (7) 

with Co colinear to B, and IC,, 1 2 B, would suffice to ensure numerical stability. K, 
is just the linearized MHD force operator in the case of a constant magnetic field 
if C,, = B,. Then they added a magnetic field B, perpendicular to B, and showed 
that stability is now ensured with L = K, + K,, 

K,=dt2[VxVx(uxC,)]xCr, (8) 

provided that Ci is colinear to B, and IC, 1 B B, . 
In our case, the equilibrium field plays the role of B, and L,; the full linearized 

MHD operator around the equilibrium plays the role of K,. This corresponds to 
the case where C, = B,, resulting in unconditional linear stability. The helical 
perturbation plays the role of B, and L, (CA) plays the role of K i. For this situation 
we find, from Eq. (8) with JC, 1 > B,, that nonlinear stability is ensured roughly if 

c > (At 6B)2, (9) 
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where 6B is the size of the helical perturbation around the equilibrium. ,/c can be 
interpreted as a smoothing length. Therefore we proceed as follows: 

-we choose the smoothing length (say, Jc- 10e2) 

- we adjust the time step such that (9) is fulfilled. 

The tokamak configuration imposes a strong ordering of the components of the 
magnetic field such that 6B4 B,; for example, during a sawtooth 6B- lop2 gives 
a good order of magnitude. That is the reason why we are able to perform com- 
putations with a time step of the order t,, without losing spatial precision, as is 
demonstrated in Section III: c is about 10e4, and this value cannot affect the spatial 
precision of the computation. In general, for about 100 grid points the mesh size is 
of the order of lop2 so that nonlinear stability could be expected superficially 
without the semi-implicit term CA. However, one has to bear in mind that: 

- in the reconnection layer, a mesh size of Ar - 10 P3 is necessary to resolve 
a layer width of 10P2; consequently grid accumulation has to be done. A factor of 
10 for the time step is gained by use of the semi-implicit term to ensure nonlinear 
stability. 

-near the center a very strong nonlinear instability takes place. We refer to 
1II.A for a more thorough discussion. Once again the semi-implicit Laplacian 
operator provides more than a factor of 10 for the size of the time step in internal 
kink simulations. 

In practice, we impose condition (9) only on the radial component 6B,. The 
reason is that the magnitude of the magnetic field is less important than its direc- 
tion, and the departure of the latter from equilibrium comes from this component, 
JB,. In all the runs we have made until now, we have never seen any non-linear 
numerical instability when (9), together with CFL velocity criterion, are fulfilled, 
even near large current sheets such as those shown in Section III. The reason is 
probably that these current sheets do not much change the nonresonant shear waves 
that are implicitly strongly stabilized. The resonant shear waves are obviously 
changed, but they evolve on a slow time scale and cannot lead to numerical 
instabilities. Neverthless, we have no precise criterion about that and keep in mind 
this potential trouble. 

In cylindrical geometry, this method is not more expensive in computing time 
than the original semi-implicit one, as the semi-implicit operator has the same 
diagonal structure for the m, n Fourier modes. In toroidal geometry this is no 
longer true: for a given n all the m are coupled and the implementation is therefore 
much harder. But, nevertheless the matrices remain 2D, bloc tridiagonal, and in 
contrast to a purely implicit method, they need to be computed and decomposed 
only every N time steps (N being of the order of 100). Therefore the extra costs are 
not very high, typically 50% for 10 poloidal and 10 toroidal modes. 
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1I.C. Numerical Scheme 

We have developed a second-order predictor corrector scheme, where in contrast 
to the semi-implicit schemes presented in Ref. [S-lo], we apply the stabilizing 
implicit operator L both at the predictor and corrector levels. This greatly improves 
the nonlinear stability of the code. Thus, the scheme reads (omitting the 
temperature diffusion and heating terms): 

Predictor. 

At 
b*-b,=-FFh(v*, b,, p,) 

2 

p* - P,, = $ FJv*, b*, P,); 

Corrector. 

(1 -L)(%+, -u,) = At F,(u*, b*, p*) 

b 

(10) 

(11) 

Pn+l-Pn=AtF 
P 

Vn+l+Un,bn+l+bn,p* . 
2 2 > 

Here, F,, Fb, F, denote the right-hand side of the MHD equations (l)(4) on 
u, b, p, respectively. We omit p for simplicity, and the magnetic diffusion do not 
enter in Fb: an implicit resistive advance of B is performed after the corrector. 

The linear stability of this scheme can readily be studied for a reduced model 
system, consisting of a two-dimensional eigenvector (u, b) of L,, as L = At’L, in the 
linear phase, where c can be set to 0 for vanishing viscosity, v = 0. Denoting io the 
(complex) eigenvalue of this eigenvector (0, 6) and c1= w At, we obtain a linear 
transfer matrix T, 

! 

l- 
a2 c1 

2(1 +ct2) 
i- 

1+a2 ( l- 
a2 

4(1+ Lx’) > 

ior l- 
( 

a2 
4( 1 + a’) 

1- a2 
2(1 +cr2) ( 

1- a2 
4(1 +a*) > i 

. (12) 

The determinant det(T) is 1 - a4/8( 1 + a2)2; the discriminant A(T) remains positive. 
We find that the scheme is linearly unconditionally stable, second order in time and 
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with a fourth-order damping. However, this damping is a very selective one: fast 
modes, which correspond roughly to c1> 10, with a time step of order t, are 
damped, but shear Alfven waves, and particularly those relevant for the evolution 
(say o! < 10-l) have negligible damping. In the nonlinear phase this scheme seems 
to be better than a standard implicit scheme (without a predictor), where u and B 
are inverted simultaneously. Moreover, the fact that the convection of the magnetic 
field is treated explicitly allows an easy improvement of the convectors if required 
(see 1II.D for an exemple). 

Note that the coefficient in dt2L, is somewhat arbitrary. From det(T) it can be 
seen that a coefficient reduced up to l/2 J2 (this leads to 1 + ct2 being replaced by 
1+cr2/2J2 in (12)) ensures the stability. However, increasing this coefficient 
certainly improves the nonlinear stability. 

1I.D. Numerical Mesh and Boundary Conditions 

The variables are expanded in a Fourier series in the periodic coordinates 0 and 
4 = zl&, corresponding to poloidal and toroidal directions. Derivatives are 
calculated by using fast Fourier transforms with dealiasing options. In the radial 
direction we use two staggered meshes [S]; this is necessary for obtaining a correct 
linear MHD spectrum. Quantities v,, h,, JH, and JZ are defined on the integer mesh 
r = (0, dr, . . . . 1 - dr, l), where dr is the equidistant mesh size (in actual calculations 
an nonuniform grid is used); quantities ug, v;, b,, b,, J,, p, and p are defined on the 
half-integer mesh r = ( - dr/2, dr/2, ,.., 1 + dr/2). Quantities on the half-integer mesh 
at r = -dr/2 are defined by parity considerations [S], together with (u,, b,) at 
r = 0, defined from (v,, b,) at r = dr/2 [9]. We use as boundary conditions at the 
wall u,(r = 1) = 0 and b,(r = 1) = 0. For nondissipative MHD no further conditions 
at the wall are required. With finite values for resistivity and viscosity, we impose 
(Vxu),=(Vxu),=O and J,=J==O at r=l, except for the m=O, n=O com- 
ponents in cylindrical and the n = 0 components in toroidal geometry, where the 
total current is imposed. 

1I.E. Comparison with Previous Schemes 

As for the FAR code [6], our scheme is linearly fully implicit. But there are two 
major differences between the scheme proposed here and that used in FAR code. 
First, we do not use explicit diffusive terms to stabilize the system nonlinearly, but 
a small implicit term. Second, we work in direct (0, b) quantities, while FAR works 
in potential representation. As stated in Ref. [6], this leads to difficulties in 
boundary conditions and in the inversion of implicit systems. As a result, Ref. [6] 
indicates a few tens of minutes (on a CRAY II) for a linear result, while we need 
a few minutes only in the same conditions, in the fully toroidal case (not presented 
here). Furthermore, we do not know if the fully algorithm used in FAR could be 
transposable in (u, b) quantities, free of the above time consuming difficulties. 

The difference between our scheme and previous semi-implicit schemes is clear: 
for a given time step, we need a semi-implicit elliptic CA operator much smaller 
(c= 10-3-10-4) in size than that used in Refs. [8-lo], as it stabilizes only the 
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departure of B from equilibrium (in linear cases, we need no semi-implicit elliptic 
operator at all). As a result, it seems unnecessary to optimize the form of this 
operator, using anisotropic elliptic operators as in Ref. [lo] which would 
correspond otherwise to the case c = 1 for sime step of order 7,. Note that even 
with this optimization, the velocity in boundary layers is very smoothed. On the 
contrary, the fully linearized MHD operator L, does not unacceptably smooth the 
boundary layers, as its nearly vanishes on the resonant shear Alfven waves. 

III. NUMERICAL TEST 

1II.A. The nonlinear numerical instability of the center 
First we want to discuss a nonlinear numerical instability associated with any 

kinked situation and which is potentially relevant in the numerical tests presented 
in 1II.C and 1II.D. A shift of the center of the magnetic configuration is caused by 
a m = 1, n = 1 magnetic perturbation as all other, higher harmonics vanish at the 
center. 

In the notation of IIA, and for a m = 1, n = 1 kink, the magnitude for the 
mode is 

B, = Cl- q(O))t, (13) 

where l is the shift of the magnetic axis. Around the center, the situation is then 
quite close to that discussed in 1I.B; an “equilibrium” field B, is perturbed by a 
nearly constant field. Consequently, without the semi-implicit CA term, a numerical 
instability is observed when 

B, Atz:E. 

But E is in this case the gridding near the center. More precisely, it can be easily 
seen that the relevant value of E near the center is dr/M, instead of simply the radial 
mesh size dr, as terms (m/dr)2 enters in linear operators such as those defined by 
(7). For calculations with about M= 10 poloidal harmonics involved, one would 
get a drastic reduction of the time step: for t = 0.5 (i.e., in the middle of a resistive 
reconnection of the internal kink) and 1 - q(0) = 0.1, the time step would be 0.02 t, 
for M = 20 and dr = 10e2. 

With the inclusion of the CA term, the analysis of 1I.B is quite precise for this 
simple effective geometry near the center and the condition 

B,At<,/c (20) 

is sufficient to ensure numerical stability in any case. For example, the internal kink 
simulation presented below is run with time steps typically 0.3 - lr, (generally 
limited by a CFL criterion on convection) with a value of c z 3 * 10P4. This value 
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cannot change the computation, as the smoothing is done over one grid cell dr, but 
a factor of M (= 10) is gained for the time step. 

In general, the criterion (20) is imposed over the whole domain, but an 
inhomogenous c(r) is then used; c will typically be lop4 in the resonant layers. 
Note that such an inhomogenous semi-implicit term has to be defined in a 
self-adjoint way, as has been pointed out by Mikic in Ref. [ 111. 

1II.B. Nonlinear Tearing Mode Saturation 

As a first example of a practical application we consider an m = 2, n = 1 tearing 
mode. The tearing mode unstable equilibrium [ 121 is given by the profile of the 
safety factor q(r) = 1.4( 1 + (2r)“)“’ and an S value of 105, the viscosity is set to zero 
and 16 poloidal and 8 toroidal harmonics are used. Figure 1 shows the time evolu- 
tion of the component B, of the magnetic field of the m = 2, n = 1 mode. A time step 
of At = 105, was used in the linear phase and of At = 22, in the nonlinear, satura- 
tion phase, after time t = 8002,. As expected, even with this large time step the 
linear growth rate is quite precise: we find y = 8.1 x 10 p3~; ‘, the result from a 
linear finite element spectral code is y = 7.95 x 10p3~; ‘. This has to be compared 
with Ref. [9], where it is stated that for such a large time step At = 102, the 
accuracy is poor. On Fig. 2 the velocity pattern is drawn: one can see that the 
saturated island is quite large and that, as expected, the velocity is extremal on the 
separatrix. This computation was made with absolutely no viscosity which explains 
the secondary vortices seen in the figure. 

1II.C. Saturation of the Ideal Kink Mode 

The saturation of the ideal kink mode was predicted analytically by Rosenbluth 
et al. [ 131 and later confirmed numerically by Park et al. [ 141, using reduced 
MHD equations. The saturation of this ideal mode is accompanied by the forma- 

6 I 

FIG. 1. The amplitude of the (m = 2, n= 1) magnetic component B, (on a logarithmic scale) is 
plotted versus time. 
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FIG. 2. Velocity pattern at time 1=800r,. 
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FIG. 3. Current profile of the saturated kink. 
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tion of a singular current sheet on the surface defined by q(r,) = 1; this raises 
serious difficulties for numerical calculations and constitutes an interesting, 
challenging test for a nonlinear code. 

We studied the saturation of the internal kink for an equilibrium given by the q 
profile q(r) = 0.9( 1 + (r/r,)4)1/2, with q(0.5) = 1, and a high pressure (b, - 1); at the 
end of the linear phase, quite a high viscosity (v = 10p4) is added in order to dis- 
sipate the MHD energy which is transformed in kinetic Alfven waves energy near 
the resonant surface. The current and the pressure profile of the quasi-stationary 
state which then appears are represented in Fig. 3 and Fig. 4. One notes a deep, 
extremely thin current peak, eight times the main current (we use here a variable 
grid, Ar z lop3 in the resonant layer). In Fig. 5 we have plotted the poloidal 
dependence J(0) in the current sheet. The simulation was run with only 12 har- 
monics, which explains the residual oscillations; nevertheless, the radial as well as 
the poloidal structure of the current sheet are satisfactory. 

Numerically, we use for c a value of lop4 and we note that this value does not 
change the thinness of the peak at all; in this ideal case, the velocity is rather large, 
and time step is limited by the convective CFL criterion. 

1II.D. Resistive Reconnection 

As a last physically relevant test case we shall present a resistive reconnection for 
the same q profile as in Section IIIC, but this time with zero pressure. We show in 
Figs. 6a,d the current profile and in Figs. 7a,d the isocontours of the helical flux, 

at four different times in order to visualize the magnetic island during reconnection. 
We used here for S a value of lo5 and viscosity was set at v = 5 x 10e5. Further- 
more, we used a variable grid (Ar = 2 x lop3 around the resonant surface) and 
12 x 12 real modes were retained in the calculation; this corresponds to the “opera- 
tional conditions” of the code. Initially, the time step here is 32, during the linear 
phase; then during the whole reconnection it is limited by the CFL constraint on 
convection: in this case, no limitation arises from the magnetic field (again we used 
c= lop4 in the current sheet and c= 3 x 10e4 at the center, which does not disturb 
the physical process). In this case, the scheme presented in 1I.C has been slightly 
modified: concerning the convection of the magnetic field, the predictor is decen- 
tered in order to assure the stability of the convection scheme under the CFL 
criteria (however, the predictor remains centered for the MHD part, where two 
values of B* are calculated, one centered, the other one decentered). 

The whole reconnection process takes about 1000 time steps, corresponding to 
about 40 min of CPU time on a CRAY 2 computer. In cylindrical geometry the 
reconnection is limited to single helicity and the utilization of the FFT is not 
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FIG. 6. Current protile during the resisttve reconnection, at four different times: (a) t = 228~~ during 
the linear growth phase; (b) t =409r,, in the middle of the reconnection; (c) f = 5075,, where the 
current sheet disappears; (d) I = 519r,, tinal state: a kink in the opposite direction takes place, as the 
reconnection was not complete. 

appropriate. However, we want to stress the fact that we are ultimately interested 
in studying these effects in toroidal geometry where different helicities are coupled. 

We do not present here the results for higher S values. Let us simply point out 
that the number of time steps necessary for a reconnection does not increase as long 
as the time step is limited by convection-this seems to be the case for S values 
between lo6 to 10’. Regarding our preliminary results, we hope to be able to work 
with an S value higher than 10’ and with current sheets comparable to the ones 
found in Section 1II.C. Such a run would take about 2 h of CPU time for the study 
of very nonlinear behaviour. 
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FIG. 7. The helical flux at the same times as in Fig. 6. 

IV. CONCLUSION 

The test cases presented in Section III show that the proposed scheme does 
answer to the fixed objective, to allow simulation of the MHD phenomena with a 
reasonable CPU cost (about 1 h for quite a high number of modes, typically 
12 x 12). More precisely, this scheme allows a high spatial resolution of radial 
boundary layers with a reasonable large time step: unlimited in the linear or dif- 
fusive phases, about 1 to 0.1~~ in very nonlinear phases, i.e., with important defor- 
mations of the magnetic configuration accompanied by current peaks. The main 
advantage of this method lies in the fact that the time step is adjusted to the physi- 
cal time scale to be studied. For this reason, this method is quite useful for tokamak 
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configurations where the field is constrained and where the separation of time scales 
is large. The method, for example, would be less useful for the reversed-field pinch 
configuration, where the dynamics are rapid. It is, of course, more diffkult to imple- 
ment this scheme than the semi-implicit schemes proposed so far, especially in 
toroidal geometry. Furthermore, it is more expansive as far as CPU time is 
concerned, but we strongly believe that it is far less expensive for a given precision. 
In fact, the inversion of the 2D operator in toroidal geometry is not very time 
consuming: the operators are bloc tridiagonal, each bloc of size 7 x M, so that for 
M- 10 the vectorization becomes quite efficient. We hope to be able to present, in 
the near future, the corresponding test cases for toroidal geometry. 
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